

Quantitative Analysis of Low Concentration Borate and Sulfate Solutions using a Portable Raman

Introduction

Boron is a semimetal found in the form of borax and other oxides [1]. The borax is made into boric acid (H_3BO_3), which is used in glass manufacturing, electronics, food preservatives, etc. [1, 2]. This process exploits different solubility behaviors of borax, H_3BO_3 and sodium sulfate (Na_2SO_4) between 0 and 100 °C [3].

Gravimetric analysis is used for quantifying desired constituents of mixed chemicals or solution by weight after separation [4]. This conventional method can monitor H₃BO₃ concentration [5] and Na₂SO₄ concentrations [6]. However, it has practical problems of laborious sample extraction preparation and data analysis, and it does not provide real-time information.

Waterflood injection in offshore oil production requires the removal from seawater and online monitoring of SO₄²⁻ to tens of ppm levels to prevent scaling and well souring.

This study demonstrates the performance of the **PTRam**, B&W Tek's Raman instrument for process development, in measuring low concentration H₃BO₃ and Na₂SO₄ solutions (<100 ppm).

Experiment setup

Instruments and sample preparation

Raman spectra of:

- a. Na₂SO₄ (ACS reagent \geq 99.0%), H₃BO₃ (ACS reagent \geq 99.5%) salts
- b. single salt
- c. mixed salt solution

were investigated using **PTRam** (BWS476-785H) with **fiber optic probe** (BAC100B-785-HT), configured with different sampling set ups for initial studies in sample vials and in situ measurements. Sampling was done with the **research-grade laboratory shaft** (RSS100-785) interfaced with a **vial holder** (NR-LVH), and for in situ measurements an **immersion shaft with sapphire-ball lens** (RIS100-HS-785-08). The instrument was controlled with **Vision** software. Table 1 summarizes the data collection methods.

Table 1. The data collection methods

Experiment	Integration Time	Laser Power	Average
Salt powders	Auto ⁺	100%	1
Single salt	120s	100%	5, 8
Mixed salt	75s	100%	8

\pm 1501 ms for Na₂SO₄ and 3869 ms for H₂SO₄

Stock solutions of 225 mg/mL Na₂SO₄ and 5 mg/mL H₃BO₃ were prepared. Beakers lined with aluminum foil were filled with 500 mL of distilled H₂O. The immersion sapphire-ball shaft connected to the fiber-optic probe of the **PTRam** was placed into the water. Table 2 summarizes the concentration range and steps used for different experiments. Test samples were made using the stock solutions. All experimental parameters were optimized through preliminary studies.

Chemometric Analysis

Vision was used for both data collection and chemometric analysis. The data were treated with Savitzky-Golay 1st derivative, Raman Region Selection ($860 - 890 \text{ cm}^{-1}$ for H₃BO₃ or 960 - 1020 cm⁻¹ for Na₂SO₄ and 1560 - 1800 cm⁻¹ for H₂O), Standard Normal Variate, Mean Center, Partial Least Squares Regression (PLS1), Cross-Validation with Segment Size 4. The number of samples used for calibration and validation are given in Table 2.

Experiment	Concentration range (ppm)	Concentration step (ppm)	No. of samples	No. calibration spectra per concentration	No. Validation spectra per concentration
H₃BO₃ solution	0 - 80	20	5	5	10
Na2SO4 solution	0 - 80	20	5	5	10
H₃BO₃ in 1 g/L Na₂SO₄	0 - 80	20	5	5	10
Na₂SO₄ in 5g/L H₃BO₃	0 - 80	20	5	5	10

 Table 2. Range of concentration and concentration step per experiment (each spectrum are technical replicates)

Results

Boric acid salt and sodium sulfate salt have intense Raman bands at 880 cm⁻¹ and 993 cm⁻¹, respectively.

Figure 2 and Table 2 & 3 summarizes the calibration curve, predicted values and limit of detection (LOD) of these Raman measurements for the single salt and mixed salt solutions. In single salt experiments, ca. 94% of the H₃BO₃ and Na₂SO₄ predictions were within ± 10 mg/L and ± 5 mg/L range of the actual concentration, respectively.

Table 3. LOD (in ppm) of H₃BO₃ and Na₂SO₄ solution

Solution	Factors	SEP [†]	LOD _{st} ‡	LOD _{io} *
H₃BO₃ solution	2	4.6	15.2	14.5
Na ₂ SO ₄ solution	2	3.1	10.2	6.9
H₃BO₃ in 1 g/L Na₂SO₄	2	10.1	33.3	31.6
Na₂SO₄ in 5g/L H₃BO₃	2	3.5	11.6	7.8

† SEP without bias correction; **‡** H_3BO_3 and Na_2SO_4 ppm; ***** $BO_3^{3\cdot}$ and $SO_4^{2\cdot}$ ppm

The representative Raman bands for H₃BO₃ and Na₂SO₄ were well separated from each other and discernible at each concentration step (Figure 1).

The validation model of 0 – 300 mg/L H₃BO₃ (0 – 285.5 ppm BO₃³⁻) in Na₂SO₄ solution had R² of 0.99 and SEP 10.1 ppm (Figure 3a). Likewise, validation model of 0 – 200 mg/L Na₂SO₄ (0 – 135.2 ppm SO₄²⁻) in H₃BO₃ solution had R² of 0.99 and RMSE 3.5 mg/L (Figure 3b).

The quantification models were built using one measurement per concentration step. This was increased to two measurements per concentration step resulting in an improved model with lower SEP of H_3BO_3 (7.2 ppm) and LOD (23.8 ppm).

Conclusion

The **PTRam** can successfully quantify H₃BO₃ and Na₂SO₄ concentrations in single salt and mixed salt solutions, with only minimum number of measurements for calibration curve. The LOD for H₃BO₃ and Na₂SO₄ solutions are ca. 15 mg/L (15 ppm BO₃³⁻) and ca. 10 mg/L (7 ppm SO₄²⁻), clearly demonstrating the ability for accurate quantitative analysis at low concentrations.

Figure 1 Raman band of H₂BO₃ vs(BO₃³⁻) at 877 cm⁻¹ in Na₂SO₄ solution (a) and Na₂SO₄ solution v1(SO_{4²⁻)} at 981 cm⁻¹ in H₂BO₃ solution (b). Concentration step, 50 mg/L.

Figure 2. Validation model for H₂BO₃ (a), and Na₂SO₄ (b) single salt solution.

Figure 3. Validation model for H₂BO₃ in 5g/L Na₂SO₄ solution (a), and Na₂SO₄ in 1g/L H_2BO_3 solution (b)

Reference

- [1] Britannica, The Editors of Encyclopaedia. "boron". Encyclopedia Britannica, 16 Jun. 2021.
- [2] Borate Today, Mining Boron - Sources And Major Boron Producers, 15 Jun. 2021.
- [3] Mergen et al., 2003. doi: 10.1163/15685520360685947
- [4] Britannica, The Editors of Encyclopaedia. "gravimetric analysis". Encyclopedia Britannica, 28 Apr. 2021.
- [5] Childs, M. P., 2016. Quantification of Boric Acid Concentration and Losses due to Vaporization in the PASTA Facility (Doctoral dissertation).
 - ISO 3237:1975

[6]

4